Copied to
clipboard

G = C42.16D10order 320 = 26·5

16th non-split extension by C42 of D10 acting via D10/C5=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.16D10, C81(C4×D5), C4011(C2×C4), C40⋊C25C4, C8⋊C41D5, (C4×D20).5C2, C405C416C2, C2.14(C4×D20), C10.41(C4×D4), (C2×C8).53D10, (C4×Dic10)⋊2C2, D20.28(C2×C4), (C2×C20).236D4, (C2×C4).114D20, Dic1018(C2×C4), C52(SD16⋊C4), C2.1(C8⋊D10), C10.2(C8⋊C22), (C2×C40).54C22, (C4×C20).14C22, C22.30(C2×D20), D205C4.15C2, C4.106(C4○D20), C20.222(C4○D4), C20.44D437C2, C20.164(C22×C4), (C2×C20).731C23, C2.1(C8.D10), C10.3(C8.C22), (C2×D20).195C22, C4⋊Dic5.265C22, (C2×Dic10).214C22, C4.63(C2×C4×D5), (C5×C8⋊C4)⋊2C2, (C2×C40⋊C2).1C2, (C2×C10).114(C2×D4), (C2×C4).675(C22×D5), SmallGroup(320,337)

Series: Derived Chief Lower central Upper central

C1C20 — C42.16D10
C1C5C10C2×C10C2×C20C2×D20C2×C40⋊C2 — C42.16D10
C5C10C20 — C42.16D10
C1C22C42C8⋊C4

Generators and relations for C42.16D10
 G = < a,b,c,d | a4=b4=1, c10=b, d2=b2, ab=ba, cac-1=dad-1=ab2, bc=cb, dbd-1=b-1, dcd-1=bc9 >

Subgroups: 518 in 120 conjugacy classes, 51 normal (39 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C8, C2×C4, C2×C4, D4, Q8, C23, D5, C10, C42, C42, C22⋊C4, C4⋊C4, C2×C8, SD16, C22×C4, C2×D4, C2×Q8, Dic5, C20, C20, D10, C2×C10, C8⋊C4, D4⋊C4, Q8⋊C4, C2.D8, C4×D4, C4×Q8, C2×SD16, C40, C40, Dic10, Dic10, C4×D5, D20, D20, C2×Dic5, C2×C20, C22×D5, SD16⋊C4, C40⋊C2, C4×Dic5, C10.D4, C4⋊Dic5, D10⋊C4, C4×C20, C2×C40, C2×Dic10, C2×C4×D5, C2×D20, C20.44D4, C405C4, D205C4, C5×C8⋊C4, C4×Dic10, C4×D20, C2×C40⋊C2, C42.16D10
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, D5, C22×C4, C2×D4, C4○D4, D10, C4×D4, C8⋊C22, C8.C22, C4×D5, D20, C22×D5, SD16⋊C4, C2×C4×D5, C2×D20, C4○D20, C4×D20, C8⋊D10, C8.D10, C42.16D10

Smallest permutation representation of C42.16D10
On 160 points
Generators in S160
(1 57 127 104)(2 78 128 85)(3 59 129 106)(4 80 130 87)(5 61 131 108)(6 42 132 89)(7 63 133 110)(8 44 134 91)(9 65 135 112)(10 46 136 93)(11 67 137 114)(12 48 138 95)(13 69 139 116)(14 50 140 97)(15 71 141 118)(16 52 142 99)(17 73 143 120)(18 54 144 101)(19 75 145 82)(20 56 146 103)(21 77 147 84)(22 58 148 105)(23 79 149 86)(24 60 150 107)(25 41 151 88)(26 62 152 109)(27 43 153 90)(28 64 154 111)(29 45 155 92)(30 66 156 113)(31 47 157 94)(32 68 158 115)(33 49 159 96)(34 70 160 117)(35 51 121 98)(36 72 122 119)(37 53 123 100)(38 74 124 81)(39 55 125 102)(40 76 126 83)
(1 11 21 31)(2 12 22 32)(3 13 23 33)(4 14 24 34)(5 15 25 35)(6 16 26 36)(7 17 27 37)(8 18 28 38)(9 19 29 39)(10 20 30 40)(41 51 61 71)(42 52 62 72)(43 53 63 73)(44 54 64 74)(45 55 65 75)(46 56 66 76)(47 57 67 77)(48 58 68 78)(49 59 69 79)(50 60 70 80)(81 91 101 111)(82 92 102 112)(83 93 103 113)(84 94 104 114)(85 95 105 115)(86 96 106 116)(87 97 107 117)(88 98 108 118)(89 99 109 119)(90 100 110 120)(121 131 141 151)(122 132 142 152)(123 133 143 153)(124 134 144 154)(125 135 145 155)(126 136 146 156)(127 137 147 157)(128 138 148 158)(129 139 149 159)(130 140 150 160)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 10 21 30)(2 29 22 9)(3 8 23 28)(4 27 24 7)(5 6 25 26)(11 40 31 20)(12 19 32 39)(13 38 33 18)(14 17 34 37)(15 36 35 16)(41 42 61 62)(43 80 63 60)(44 59 64 79)(45 78 65 58)(46 57 66 77)(47 76 67 56)(48 55 68 75)(49 74 69 54)(50 53 70 73)(51 72 71 52)(81 116 101 96)(82 95 102 115)(83 114 103 94)(84 93 104 113)(85 112 105 92)(86 91 106 111)(87 110 107 90)(88 89 108 109)(97 100 117 120)(98 119 118 99)(121 142 141 122)(123 140 143 160)(124 159 144 139)(125 138 145 158)(126 157 146 137)(127 136 147 156)(128 155 148 135)(129 134 149 154)(130 153 150 133)(131 132 151 152)

G:=sub<Sym(160)| (1,57,127,104)(2,78,128,85)(3,59,129,106)(4,80,130,87)(5,61,131,108)(6,42,132,89)(7,63,133,110)(8,44,134,91)(9,65,135,112)(10,46,136,93)(11,67,137,114)(12,48,138,95)(13,69,139,116)(14,50,140,97)(15,71,141,118)(16,52,142,99)(17,73,143,120)(18,54,144,101)(19,75,145,82)(20,56,146,103)(21,77,147,84)(22,58,148,105)(23,79,149,86)(24,60,150,107)(25,41,151,88)(26,62,152,109)(27,43,153,90)(28,64,154,111)(29,45,155,92)(30,66,156,113)(31,47,157,94)(32,68,158,115)(33,49,159,96)(34,70,160,117)(35,51,121,98)(36,72,122,119)(37,53,123,100)(38,74,124,81)(39,55,125,102)(40,76,126,83), (1,11,21,31)(2,12,22,32)(3,13,23,33)(4,14,24,34)(5,15,25,35)(6,16,26,36)(7,17,27,37)(8,18,28,38)(9,19,29,39)(10,20,30,40)(41,51,61,71)(42,52,62,72)(43,53,63,73)(44,54,64,74)(45,55,65,75)(46,56,66,76)(47,57,67,77)(48,58,68,78)(49,59,69,79)(50,60,70,80)(81,91,101,111)(82,92,102,112)(83,93,103,113)(84,94,104,114)(85,95,105,115)(86,96,106,116)(87,97,107,117)(88,98,108,118)(89,99,109,119)(90,100,110,120)(121,131,141,151)(122,132,142,152)(123,133,143,153)(124,134,144,154)(125,135,145,155)(126,136,146,156)(127,137,147,157)(128,138,148,158)(129,139,149,159)(130,140,150,160), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,10,21,30)(2,29,22,9)(3,8,23,28)(4,27,24,7)(5,6,25,26)(11,40,31,20)(12,19,32,39)(13,38,33,18)(14,17,34,37)(15,36,35,16)(41,42,61,62)(43,80,63,60)(44,59,64,79)(45,78,65,58)(46,57,66,77)(47,76,67,56)(48,55,68,75)(49,74,69,54)(50,53,70,73)(51,72,71,52)(81,116,101,96)(82,95,102,115)(83,114,103,94)(84,93,104,113)(85,112,105,92)(86,91,106,111)(87,110,107,90)(88,89,108,109)(97,100,117,120)(98,119,118,99)(121,142,141,122)(123,140,143,160)(124,159,144,139)(125,138,145,158)(126,157,146,137)(127,136,147,156)(128,155,148,135)(129,134,149,154)(130,153,150,133)(131,132,151,152)>;

G:=Group( (1,57,127,104)(2,78,128,85)(3,59,129,106)(4,80,130,87)(5,61,131,108)(6,42,132,89)(7,63,133,110)(8,44,134,91)(9,65,135,112)(10,46,136,93)(11,67,137,114)(12,48,138,95)(13,69,139,116)(14,50,140,97)(15,71,141,118)(16,52,142,99)(17,73,143,120)(18,54,144,101)(19,75,145,82)(20,56,146,103)(21,77,147,84)(22,58,148,105)(23,79,149,86)(24,60,150,107)(25,41,151,88)(26,62,152,109)(27,43,153,90)(28,64,154,111)(29,45,155,92)(30,66,156,113)(31,47,157,94)(32,68,158,115)(33,49,159,96)(34,70,160,117)(35,51,121,98)(36,72,122,119)(37,53,123,100)(38,74,124,81)(39,55,125,102)(40,76,126,83), (1,11,21,31)(2,12,22,32)(3,13,23,33)(4,14,24,34)(5,15,25,35)(6,16,26,36)(7,17,27,37)(8,18,28,38)(9,19,29,39)(10,20,30,40)(41,51,61,71)(42,52,62,72)(43,53,63,73)(44,54,64,74)(45,55,65,75)(46,56,66,76)(47,57,67,77)(48,58,68,78)(49,59,69,79)(50,60,70,80)(81,91,101,111)(82,92,102,112)(83,93,103,113)(84,94,104,114)(85,95,105,115)(86,96,106,116)(87,97,107,117)(88,98,108,118)(89,99,109,119)(90,100,110,120)(121,131,141,151)(122,132,142,152)(123,133,143,153)(124,134,144,154)(125,135,145,155)(126,136,146,156)(127,137,147,157)(128,138,148,158)(129,139,149,159)(130,140,150,160), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,10,21,30)(2,29,22,9)(3,8,23,28)(4,27,24,7)(5,6,25,26)(11,40,31,20)(12,19,32,39)(13,38,33,18)(14,17,34,37)(15,36,35,16)(41,42,61,62)(43,80,63,60)(44,59,64,79)(45,78,65,58)(46,57,66,77)(47,76,67,56)(48,55,68,75)(49,74,69,54)(50,53,70,73)(51,72,71,52)(81,116,101,96)(82,95,102,115)(83,114,103,94)(84,93,104,113)(85,112,105,92)(86,91,106,111)(87,110,107,90)(88,89,108,109)(97,100,117,120)(98,119,118,99)(121,142,141,122)(123,140,143,160)(124,159,144,139)(125,138,145,158)(126,157,146,137)(127,136,147,156)(128,155,148,135)(129,134,149,154)(130,153,150,133)(131,132,151,152) );

G=PermutationGroup([[(1,57,127,104),(2,78,128,85),(3,59,129,106),(4,80,130,87),(5,61,131,108),(6,42,132,89),(7,63,133,110),(8,44,134,91),(9,65,135,112),(10,46,136,93),(11,67,137,114),(12,48,138,95),(13,69,139,116),(14,50,140,97),(15,71,141,118),(16,52,142,99),(17,73,143,120),(18,54,144,101),(19,75,145,82),(20,56,146,103),(21,77,147,84),(22,58,148,105),(23,79,149,86),(24,60,150,107),(25,41,151,88),(26,62,152,109),(27,43,153,90),(28,64,154,111),(29,45,155,92),(30,66,156,113),(31,47,157,94),(32,68,158,115),(33,49,159,96),(34,70,160,117),(35,51,121,98),(36,72,122,119),(37,53,123,100),(38,74,124,81),(39,55,125,102),(40,76,126,83)], [(1,11,21,31),(2,12,22,32),(3,13,23,33),(4,14,24,34),(5,15,25,35),(6,16,26,36),(7,17,27,37),(8,18,28,38),(9,19,29,39),(10,20,30,40),(41,51,61,71),(42,52,62,72),(43,53,63,73),(44,54,64,74),(45,55,65,75),(46,56,66,76),(47,57,67,77),(48,58,68,78),(49,59,69,79),(50,60,70,80),(81,91,101,111),(82,92,102,112),(83,93,103,113),(84,94,104,114),(85,95,105,115),(86,96,106,116),(87,97,107,117),(88,98,108,118),(89,99,109,119),(90,100,110,120),(121,131,141,151),(122,132,142,152),(123,133,143,153),(124,134,144,154),(125,135,145,155),(126,136,146,156),(127,137,147,157),(128,138,148,158),(129,139,149,159),(130,140,150,160)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,10,21,30),(2,29,22,9),(3,8,23,28),(4,27,24,7),(5,6,25,26),(11,40,31,20),(12,19,32,39),(13,38,33,18),(14,17,34,37),(15,36,35,16),(41,42,61,62),(43,80,63,60),(44,59,64,79),(45,78,65,58),(46,57,66,77),(47,76,67,56),(48,55,68,75),(49,74,69,54),(50,53,70,73),(51,72,71,52),(81,116,101,96),(82,95,102,115),(83,114,103,94),(84,93,104,113),(85,112,105,92),(86,91,106,111),(87,110,107,90),(88,89,108,109),(97,100,117,120),(98,119,118,99),(121,142,141,122),(123,140,143,160),(124,159,144,139),(125,138,145,158),(126,157,146,137),(127,136,147,156),(128,155,148,135),(129,134,149,154),(130,153,150,133),(131,132,151,152)]])

62 conjugacy classes

class 1 2A2B2C2D2E4A···4F4G···4L5A5B8A8B8C8D10A···10F20A···20H20I···20P40A···40P
order1222224···44···455888810···1020···2020···2040···40
size111120202···220···202244442···22···24···44···4

62 irreducible representations

dim111111111222222224444
type++++++++++++++-+-
imageC1C2C2C2C2C2C2C2C4D4D5C4○D4D10D10C4×D5D20C4○D20C8⋊C22C8.C22C8⋊D10C8.D10
kernelC42.16D10C20.44D4C405C4D205C4C5×C8⋊C4C4×Dic10C4×D20C2×C40⋊C2C40⋊C2C2×C20C8⋊C4C20C42C2×C8C8C2×C4C4C10C10C2C2
# reps111111118222248881144

Matrix representation of C42.16D10 in GL6(𝔽41)

900000
090000
00184390
003731039
0011162337
002522410
,
100000
010000
00303200
0091100
00003032
0000911
,
0340000
6350000
001710512
003129293
0013172431
0024171012
,
6340000
5350000
002639125
002115329
007203124
0012341210

G:=sub<GL(6,GF(41))| [9,0,0,0,0,0,0,9,0,0,0,0,0,0,18,37,11,25,0,0,4,31,16,22,0,0,39,0,23,4,0,0,0,39,37,10],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,30,9,0,0,0,0,32,11,0,0,0,0,0,0,30,9,0,0,0,0,32,11],[0,6,0,0,0,0,34,35,0,0,0,0,0,0,17,31,13,24,0,0,10,29,17,17,0,0,5,29,24,10,0,0,12,3,31,12],[6,5,0,0,0,0,34,35,0,0,0,0,0,0,26,21,7,12,0,0,39,15,20,34,0,0,12,3,31,12,0,0,5,29,24,10] >;

C42.16D10 in GAP, Magma, Sage, TeX

C_4^2._{16}D_{10}
% in TeX

G:=Group("C4^2.16D10");
// GroupNames label

G:=SmallGroup(320,337);
// by ID

G=gap.SmallGroup(320,337);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,253,120,387,58,1684,102,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=1,c^10=b,d^2=b^2,a*b=b*a,c*a*c^-1=d*a*d^-1=a*b^2,b*c=c*b,d*b*d^-1=b^-1,d*c*d^-1=b*c^9>;
// generators/relations

׿
×
𝔽